Abstract
Stability plays a central role in arithmetic. In this article, we explain some basic ideas and present certain constructions for our studies. There are two aspects: namely, general Class Field Theories for Riemann surfaces using semi-stable parabolic bundles and for $p$-adic number fields using what we call semi-stable filtered $(\varphi, N;\omega)$-modules; and non-abelian zeta functions for function fields over finite fields using semi-stable bundles and for number fields using semi-stable lattices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.