Abstract

In this study CO 2, H 2/H 2O and H 2O low pressure plasma treatment of poly(tetrafluoroethylene) (PTFE) foils and of thin plasma deposited fluorocarbon polymer (PDFP) films with a structure close to PTFE was investigated. The properties of the plasma were analyzed by mass spectroscopy (MS) and optical emission spectroscopy (OES). The modified fluorocarbon surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), fourier transform infrared (FTIR) spectroscopy, spectroscopic ellipsometry, electrokinetic measurements and dynamic contact angle measurements in order to find optimized treatment conditions. The results of the surface modification were compared with respect to the efficiency of the plasma treatment and the stability of the modification effect at different ambient conditions. It was shown that the H 2O plasma treatment is the most effective process for the intended modification. The hydrophobic PTFE surface was converted into a more hydrophilic one. The introduced radicals after the H 2O plasma treatment can be utilized subsequently for post plasma reactions such as grafting processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.