Abstract
AbstractA fundamental understanding of the behavior of non‐noble based materials toward the hydrogen evolution reaction is crucial for the successful implementation into practical devices. Through the implementation of a highly sensitive inductively coupled plasma mass spectrometer coupled to a scanning flow cell, the activity and stability of non‐noble electrocatalysts is presented. The studied catalysts comprise a range of compositions, including metal carbides (WC), sulfides (MoS2), phosphides (Ni5P4, Co2P), and their base metals (W, Ni, Mo, Co); their activity, stability, and degradation behavior was elaborated and compared to the state‐of‐the‐art catalyst platinum. The non‐noble materials are stable at HER potentials but dissolve substantially when no current is flowing. Through pre‐ and post‐characterization of the catalysts, explanations of their stability (thermodynamics and kinetics) are discussed, challenges for the application in real devices are analyzed, and strategies for circumventing dissolution are suggested. The precise correlation of metal dissolution with applied potential/current density allows for narrowing down suitable material choices as replacement for precious group metals as for example, platinum and opens up new ways in finding cost‐efficient, active, and stable new‐generation electrocatalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.