Abstract
Spatially long-range interactions for linearly elastic media resulting in dispersion relations are modelled by an integro-differential equation of convolution type (IDE) that incorporate non-local effects. This type of IDE is nonstandard (hence, it is almost impossible to obtain exact solutions) and plays an important role in modeling various applied science and engineering problems. In this article, such an IDE describing a linear elastic wave phenomenon has been studied. First, a discrete equivalent of the model IDE in space is proposed and then a class of forward backward average one step \(\theta \) scheme for the semi-discrete time dependent numerical method has been developed. Further, stability and accuracy of the developed method has been analyzed rigorously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.