Abstract
Recently, tolerance interval approaches to the calculation of a shelf life of a drug product have been proposed in the literature. These address the belief that shelf life should be related to control of a certain proportion of batches being out of specification. We question the appropriateness of the tolerance interval approach. Our concerns relate to the computational challenges and practical interpretations of the method. We provide an alternative Bayesian approach, which directly controls the desired proportion of batches falling out of specification assuming a controlled manufacturing process. The approach has an intuitive interpretation and posterior distributions are straightforward to compute. If prior information on the fixed and random parameters is available, a Bayesian approach can provide additional benefits both to the company and the consumer. It also avoids many of the computational challenges with the tolerance interval methodology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.