Abstract
In this manuscript, we survey a numerical algorithm based on the combination of the homotopy perturbation method and the Sadik transform for solving the time-fractional nonlinear modified shallow water waves (called Kawahara equation) within the frame of the Caputo–Prabhakar (CP) operator. The nonlinear terms are handled with the assistance of the homotopy polynomials. The stability analysis of the implemented method is studied by using S-stable mapping and the Banach contraction principle. Also, we use the fixed-point method to determine the existence and uniqueness of solutions in the given suggested model. Finally, some numerical simulations are illustrated to display the accuracy and efficiency of the present numerical method. Moreover, numerical behaviors are captured to validate the reliability and efficiency of the scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.