Abstract

The study of boundary layer flow has gained considerable interest owing to its extensive engineering applications. Thus, this numerical study aims to investigate the stability analysis of unsteady flow in the hybrid Al2O3-Cu/H2O nanofluid past a shrinking permeable cylinder. The impacts of suction and unsteadiness parameters are considered in this study. The partial differential equations are converted into a system of nonlinear ordinary differential equations by selecting suitable similarity transformation and solved using the bvp4c code in the MATLAB program. The findings revealed that the existence of dual solutions is visible. The skin friction coefficient and the local Nusselt numbers of Al2O3-Cu/H2O increase with the inclusion of the suction parameter. The presence of the unsteadiness parameter actively promotes heat transfer degradation on the shrinking cylinder. Stability analysis indicates that a stable and physically realizable solution appeared in the first solution, whereas the second solution is unstable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call