Abstract
The shear strength of unsaturated soils exhibits significant nonlinearity, while previous studies often simplified it with linear strength models. The objective of this paper is to investigate the distinctions in the stability of three-dimensional (3D) tunnel faces when using linear and nonlinear strength models. A new 3D rotational failure mechanism and an extended form of the Mohr–Coulomb (M-C) failure criterion were integrated into the kinematically limited analysis (KLA) framework to describe the failure characteristics of tunnel faces. Subsequently, the factor of safety (FS) of the 3D tunnel faces was calculated using the strength reduction method (SRM). In the discussion section, the impacts of nonlinear shear strength, matric suction in the unsaturated soils, and the 3D geometric parameters of the tunnel on the stability of the tunnel face were analyzed. The outcomes indicate that, in unsaturated soil conditions, diverse nonlinear strength calculation models and soil types exert disparate influences on the FS of 3D tunnel faces. The main novelty of this study lies in establishing an effective method for assessing the stability of tunnel faces in unsaturated soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.