Abstract
We study the convergence of the quasidiffusion (QD) method on one-dimensional spatially periodic heterogeneous problems. The QD method is a nonlinear projection-iterative method. A Fourier analysis of the linearized QD equations is performed. The convergence rates of the QD method in the vicinity of the solution are obtained. We also analyze the Second Moment (SM) method, which can be interpreted as a linear version of the QD method. The presented analysis gives a new insight on the convergence behavior of the QD method in a discretized form and reveals the differences in the convergence of the QD and SM methods. Numerical results are presented to confirm theoretical predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.