Abstract

Abstract The Korea Atomic Energy Research Institute (KAERI) has been developing the 150 MWe Prototype Generation-IV Sodium-cooled Fast Reactor (PGSFR). The design concept is highly based on passive safety mechanisms, minimizing the need for engineered safety systems. Presently, it is of primary importance to assure the reactor dynamics and stability against small reactivity disturbances under power operating conditions. KAERI has therefore developed the NuSTAB code for stability analysis of the PGSFR. In NuSTAB, the neutron-kinetic and thermal-hydraulic coupling equations are linearized to form the characteristic equation, which is solved as a generalized eigenvalue problem for determining the decay ratio, an indicator of the system stability. In this paper, the stability of the PGSFR was analyzed by applying the point kinetic and spatial kinetic options in the NuSTAB code. System responses to temperature feedbacks including the Doppler effect, thermal expansion, coolant density change, and overall feedback were studied. The results indicate that the initial U and final TRU cores of the PGSFR are both inherently stable thanks to the temperature feedbacks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.