Abstract

<abstract><p>This paper analyzes the stability of numerical solutions for a nonlinear Schrödinger equation that is widely used in several applications in quantum physics, optical business, etc. One of the most popular approaches to solving nonlinear problems is the application of a linearization scheme. In this paper, two linearization schemes—Newton and Picard methods were utilized to construct systems of linear equations and finite difference methods. Crank-Nicolson and backward Euler methods were used to establish numerical solutions to the corresponding linearized problems. We investigated the stability of each system when a finite difference discretization is applied, and the convergence of the suggested approximation was evaluated to verify theoretical analysis.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call