Abstract

We study the stability properties of switched systems consisting of both Hurwitz stable and unstable linear time-invariant subsystems using an average dwell time approach. We propose a class of switching laws so that the entire switched system is exponentially stable with a desired stability margin. In the switching laws, the average dwell time is required to be sufficiently large, and the total activation time ratio between Hurwitz stable subsystems and unstable subsystems is required to be no less than a specified constant. We also apply the result to perturbed switched systems where nonlinear vanishing or non-vanishing norm-bounded perturbations exist in the subsystems, and we show quantitatively that, when norms of the perturbations are small, the solutions of the switched systems converge to the origin exponentially under the same switching laws.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.