Abstract
This paper introduces an effective approach to studying the stability of recurrent neural networks with a time-invariant delay. By employing a new Lyapunov-Krasovskii functional form based on delay partitioning, novel delay-dependent stability criteria are established to guarantee the global asymptotic stability of static neural networks. These conditions are expressed in the framework of linear matrix inequalities, which can be verified easily by means of standard software. It is shown, by comparing with existing approaches, that the delay-partitioning projection approach can largely reduce the conservatism of the stability results. Finally, two examples are given to show the effectiveness of the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.