Abstract
The study on stagnation boundary layer flow in nanofluid over stretching/shrinking sheet with the effect of slip at the boundary was considered by applying the Buongiorno's model. The partial differential equations of the governing equations were transformed into ordinary differential equations by using appropriate similarity transformation in order to obtain the similarity equations. The equations then were substituted into bvp4c code in Matlab software to get the numerical results. The results of skin friction coefficient, heat transfer coefficient as well as mass transfer coefficient on the governing parameters such as slip parameter, Brownian motion parameter, and thermophoresis parameter are shown graphically. The presence of slip parameter is significantly affected the skin friction, heat and mass transfer coefficient. The smallest number of Brownian motion is sufficient to increase the heat transfer coefficient while largest number of thermophoresis parameter is required to increase mass transfer coefficient. The stability analysis results expressed that the first solution is stable and physically realizable whereas the second solution is not.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.