Abstract
Stability of the shear thinning Taylor–Couette flow is carried out and complete bifurcation diagram is drawn. The fluid is assumed to follow the Carreau–Bird model and mixed boundary conditions are imposed. The low-order dynamical system, resulted from Galerkin projection of the conservation of mass and momentum equations, includes additional nonlinear terms in the velocity components originated from the shear-dependent viscosity. It is observed, that the base flow loses its radial flow stability to the vortex structure at a lower critical Taylor number, as the shear thinning effects increases. The emergence of the vortices corresponds to the onset of a supercritical bifurcation which is also seen in the flow of a linear fluid. However, unlike the Newtonian case, shear-thinning Taylor vortices lose their stability as the Taylor number reaches a second critical number corresponding to the onset of a Hopf bifurcation. Complete flow field together with viscosity maps are given for different scenarios in the bifurcation diagram.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.