Abstract

Stability of the shear thinning Taylor–Couette flow is carried out and complete bifurcation diagram is drawn. The fluid is assumed to follow the Carreau–Bird model and mixed boundary conditions are imposed. The low-order dynamical system, resulted from Galerkin projection of the conservation of mass and momentum equations, includes additional nonlinear terms in the velocity components originated from the shear-dependent viscosity. It is observed, that the base flow loses its radial flow stability to the vortex structure at a lower critical Taylor number, as the shear thinning effects increases. The emergence of the vortices corresponds to the onset of a supercritical bifurcation which is also seen in the flow of a linear fluid. However, unlike the Newtonian case, shear-thinning Taylor vortices lose their stability as the Taylor number reaches a second critical number corresponding to the onset of a Hopf bifurcation. Complete flow field together with viscosity maps are given for different scenarios in the bifurcation diagram.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call