Abstract
AbstractReal‐time hybrid testing is a method that combines experimental substructure(s) representing component(s) of a structure with a numerical model of the remaining part of the structure. These substructures are combined with the integration algorithm for the test and the servo‐hydraulic actuator to form the real‐time hybrid testing system. The inherent dynamics of the servo‐hydraulic actuator used in real‐time hybrid testing will give rise to a time delay, which may result in a degradation of accuracy of the test, and possibly render the system to become unstable. To acquire a better understanding of the stability of a real‐time hybrid test with actuator delay, a stability analysis procedure for single‐degree‐of‐freedom structures is presented that includes both the actuator delay and an explicit integration algorithm. The actuator delay is modeled by a discrete transfer function and combined with a discrete transfer function representing the integration algorithm to form a closed‐loop transfer function for the real‐time hybrid testing system. The stability of the system is investigated by examining the poles of the closed‐loop transfer function. The effect of actuator delay on the stability of a real‐time hybrid test is shown to be dependent on the structural parameters as well as the form of the integration algorithm. The stability analysis results can have a significant difference compared with the solution from the delay differential equation, thereby illustrating the need to include the integration algorithm in the stability analysis of a real‐time hybrid testing system. Copyright © 2007 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.