Abstract
This paper is concerned with the numerical stability of implicit Runge-Kutta methods for nonlinear neutral Volterra delay-integro-differential equations with constant delay. Using a Halanay inequality generalized by Liz and Trofimchuk, we give two sufficient conditions for the stability of the true solution to this class of equations. Runge-Kutta methods with compound quadrature rule are considered. Nonlinear stability conditions for the proposed methods are derived. As an illustration of the application of these investigations, the asymptotic stability of the presented methods for Volterra delay-integro-differential equations are proved under some weaker conditions than those in the literature. An extension of the stability results to such equations with weakly singular kernel is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Mathematics Theory Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.