Abstract

The combined effects of surface roughness and lubricants rheology on stability of a rigid rotor supported on finite journal bearing under thermal elastohydrodynamic lubrication have been investigated using the transient method. The newly derived time dependent modified Reynolds and the adiabatic energy equations were formulated using a non-Newtonian Carreau viscosity model. The simultaneous systems of modified Reynolds equation, elasticity equation, energy equation, and the rotor motion equation with initial conditions were solved numerically using multigrid multi-level method with full approximation technique. From the characteristic equation, the instability threshold is then obtained with various surface roughness parameters and the elastic modulus of the bearing liner materials. The results show that stability of the bearing system deteriorates with decreasing both the power law exponent and the elastic modulus of bearing liner material. The rough surface journal bearing with transverse pattern under TEHL regime exhibits better stability when compared with the rough surface journal bearing with longitudinal pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call