Abstract
It has been observed that a bottleneck random early detection (RED) gateway becomes oscillatory when regulating a flow in multiple TCP connections. The stability boundary of the TCP-RED system depends on various network parameters, making the adjustment of the RED gateway a difficult task. Based on a fluid-flow model, analytical conditions were formulated that describe the stable boundary of the RED gateway depending on the number of TCP Reno connections. The proposed model accurately generates a stability boundary surface in a four dimensional space, which facilitates the adjustment of parameters for stable operation of the RED gateway. The accuracy of the analytical results has been verified using the ns-2 network simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.