Abstract
This paper addresses the problem of global μ -stability for quaternion-valued neutral-type neural networks (QVNTNNs) with time-varying delays. First, QVNTNNs are transformed into two complex-valued systems by using a transformation to reduce the complexity of the computation generated by the non-commutativity of quaternion multiplication. A new convex inequality in a complex field is introduced. In what follows, the condition for the existence and uniqueness of the equilibrium point is primarily obtained by the homeomorphism theory. Next, the global stability conditions of the complex-valued systems are provided by constructing a novel Lyapunov–Krasovskii functional, using an integral inequality technique, and reciprocal convex combination approach. The gained global μ -stability conditions can be divided into three different kinds of stability forms by varying the positive continuous function μ ( t ) . Finally, three reliable examples and a simulation are given to display the effectiveness of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.