Abstract
An approach is presented deriving analytical stability and bifurcation conditions for systems with periodically varying coefficients. The method is based on a point mapping(period to period mapping) representation of the system's dynamics. An algorithm is employed to obtain an analytical expression for the point mapping and its dependence on the system's parameters. The algorithm is devised to derive the coefficients of a multinominal expansion of the point mapping up to an arbitrary order in terms of the state variables and of the parameters. Analytical stability and bifurcation condition are then formulated and expressed as functional relations between the parameters. To demonstrate the application of the method, the parametric stability of Mathieu's equation and of a two-degree of freedom system are investigated. The results obtained by the proposed approach are compared to those obtained by perturbation analysis and by direct integration which we considered to the “exact solution”. It is shown that, unlike perturbation analysis, the proposed method provides very accurate solution even for large valuesof the parameters. If an expansion of the point mapping in terms of a small parameter is performed the method is equivalent to perturbation analysis. Moreover, it is demonstrated that the method can be easily applied to multiple-degree-of-freedom systems using the same framework. This feature is an important advantage since most of the existing analysis methods apply mainly to single-degree-of-freedom systems and their extension to higher dimensions is difficult and computationally cumbersome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.