Abstract

Quadratic systems play an important role in the modeling of a wide class of nonlinear processes (electrical, robotic, biological, etc.). For such systems it is of mandatory importance not only to determine whether the origin of the state space is locally asymptotically stable, but also to ensure that the operative range is included into the convergence region of the equilibrium. Based on this observation, this paper considers the following problem: given the zero equilibrium point of a nonlinear quadratic system, assumed to be locally asymptotically stable, and a certain polytope in the state space containing the origin, determine whether this polytope belongs to the region of attraction of the equilibrium. The proposed approach is based on polyhedral Lyapunov functions, rather than on the classical quadratic Lyapunov functions. An example shows that our methodology may return less conservative results than those obtainable with previous approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.