Abstract
The asymtoptic stability properties of neutral type systems are studied mainly in the critical case when the exponential stability is not possible. We consider an operator model of the system in Hilbert space and use recent results on the existence of a Riesz basis of invariant finite-dimensional subspaces in order to verify its dissipativity. The main results concern the conditions of asymptotic non-exponential stability. We show that the property of asymptotic stability is not determinated only by the spectrum of the system but essentially depends on the geometric spectral characteristic of its main neutral term. Moreover, we present an example of two systems of neutral type which have both the same spectrum in the open left-half plane and the main neutral term but one of them is asymptotically stable while the other is unstable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.