Abstract
Abstract This paper deals with a new class of non-linear impulsive sequential fractional differential equations with multi-point boundary conditions using Caputo fractional derivative, where impulses are non instantaneous. We develop some sufficient conditions for existence, uniqueness and different types of Ulam stability, namely Hyers–Ulam stability, generalized Hyers–Ulam stability, Hyers–Ulam–Rassias stability and generalized Hyers–Ulam–Rassias stability for the given problem. The required conditions are obtained using fixed point approach. The validity of our main results is shown with the aid of few examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Nonlinear Sciences and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.