Abstract
Coordinated dynamical swarm behavior occurs when certain types of animals forage for food or try to avoid predators. Analogous behaviors can occur in engineering systems (e.g., in groups of autonomous mobile robots or air vehicles). In this paper, we study a model of an M-dimensional (M/spl ges/2) asynchronous swarm with a fixed communication topology, where each member only communicate with fixed neighbors, to provide conditions under which collision-free convergence can be achieved with finite-size swarm members that have proximity sensors, and neighbor position sensors that only provide delayed position information. Moreover, we give conditions under which an M-dimensional asynchronous mobile swarm with a fixed communication topology following an edge-leader can maintain cohesion during movements even in the presence of sensing delays and asynchronism. In addition, the swarm movement flexibility is analyzed. Such stability analysis is of fundamental importance if one wants to understand the coordination mechanisms for groups of autonomous vehicles or robots, where intermember communication channels are less than perfect and collisions must be avoided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.