Abstract
The cargo transportation in the world is mostly dominated by road transport, using long combination vehicles (LCV’s). These vehicles offer more load capacity, which reduces transport costs and thus increases the efficiency and competitiveness of companies and the country. But the tradeoff of LCV’s is their low lateral stability and propensity to roll over, which has been the focus of many studies. Most vehicle stability models do not consider the longitudinal aspects of the vehicle and the road, such as the stiffness of the chassis, the gravity center location, and the longitudinal slope angle of the road. But, the use of three-dimensional models of vehicles allows a more rigorous analysis of vehicle stability. In this context, this study aims to develop a three-dimensional mechanism model representing the last trailer unit of an LCV under an increasing lateral load until it reaches the rollover threshold. The proposed model considers the gravity center movement of the trailer, which is affected by the suspension, tires, fifth-wheel, and the chassis. Davies method has proved to be an important tool in the kinetostatic analysis of mechanisms, and therefore it is employed for the kinetostatic analysis of the three-dimensional mechanism of the trailer.
Highlights
The tyres system maintains contact with the ground and filters the disturbances imposed by road imperfections [3]
This study demonstrates that the longitudinal characteristics of a trailer model have an essential influence on the static rollover threshold (SRT) factor calculation
The SRT factor is approximately 38% lower than the previously reported standard value. This value is very close to that reported by Winkler [20] (i.e. 40%), which suggests that the proposed model provides consistent results [32]
Summary
According to Rempel [1] and Melo [2], the last unit (semi-trailer) of an LCV is the critical unit, since it is subjected to a high lateral acceleration compared to the tractor unit, which impacts the rollover threshold of the unit and the vehicle Taking into account this aspect, a simplified trailer model (Figure 1) is modelled and analysed to calculate the SRT factor for LVCs. The tyres, suspension, fifth wheel, and chassis are directly responsible for the CG movements; these movements are dependent on the forces acting on the trailer CG, such as weight (W), disturbance forces imposed by the ground, and lateral inertial force (may) when the vehicle makes a turn. During cornering or evasive manoeuvres, the weight and the lateral inertial force acting on the vehicle centre of gravity cause its displacement, which can lead to vehicle rollover
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.