Abstract

AbstractThe stability of an interval type-2 (IT2) sampled-data (SD) polynomial fuzzy-model-based control system with a switching control scheme is studied in this paper. The uncertain nonlinear plant is depicted via an IT2 polynomial fuzzy model. To realize control, a switching IT2SD polynomial fuzzy controller is generated. This paper adopts a switching control scheme with a variable sampling period. The modeling domain consists of several sub-domains, and each sub-domain corresponds to a local IT2SD polynomial fuzzy controller. These local IT2SD polynomial fuzzy controllers form the switching IT2SD polynomial fuzzy controller. To aid in the stability analysis, this paper adopts a looped-functional-based technique. The imperfect premise matching concept is brought in to solve the mismatch dilemma caused by the SD control strategy and uncertainties. For decreasing the conservativeness, this paper takes into account the state information as well as the information of IT2 membership functions. The stability analysis is performed for each sub-domain, providing the potential for further relaxation. As polynomials exist in the stability conditions, this paper employs the sum-of-squares method for the stability investigation. The simulation outcomes confirm the efficacy of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call