Abstract

Intershaft squeeze film dampers have been investigated for damping of dual rotor aircraft jet engines. Initial investigations indicated that the intershaft dampers would attenuate the amplitude of the engine vibration and decrease the force transmitted through the intershaft bearing, thereby increasing its life. Also it was thought that the intershaft damper would enhance the stability of the rotor-bearing system. Unfortunately, it was determined both theoretically and experimentally that the intershaft squeeze film damper was unstable above the engine's first critical speed. In this paper, a stability analysis of rotors incorporating intershaft squeeze film dampers is performed. A rotor model consisting of two Jeffcott rotors with two intershaft squeeze film dampers is investigated. Examining the system characteristic equation for the conditions at which the roots indicate an ever growing unstable motion results in the stability conditions. The cause of the instability is identified as the rotation of the oil in the damper clearance. The oil rotation adds energy to the forward whirl of the rotor system above the critical speed and thus causes the instability. Below the critical speed the oil film removes energy from the forward rotor whirl. It is also shown that the backward whirl of the rotor system is always stable. Several proposed configurations of intershaft squeeze film dampers are discussed, and it is shown that the intershaft dampers are stable supercritically only with a configuration in which the oil film does not rotate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.