Abstract

In this paper, the problem of stability analysis for a class of impulsive stochastic Cohen–Grossberg neural networks with mixed delays is considered. The mixed time delays comprise both the time-varying and infinite distributed delays. By employing a combination of the M -matrix theory and stochastic analysis technique, a sufficient condition is obtained to ensure the existence, uniqueness, and exponential p -stability of the equilibrium point for the addressed impulsive stochastic Cohen–Grossberg neural network with mixed delays. The proposed method, which does not make use of the Lyapunov functional, is shown to be simple yet effective for analyzing the stability of impulsive or stochastic neural networks with variable and/or distributed delays. We then extend our main results to the case where the parameters contain interval uncertainties. Moreover, the exponential convergence rate index is estimated, which depends on the system parameters. An example is given to show the effectiveness of the obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.