Abstract

This paper deals with the ultimate bearing capacity of soft clayey soils, reinforced by stone columns, analyzed in the framework of the yield design theory. Since such geotechnical structures are almost impossible to analyze directly due to the strong heterogeneity of the reinforced soil, an alternative homogenization approach is advocated here. First, numerical lower and upper bound estimates for the macroscopic strength criterion of the stone column reinforced soil are approximated in a rigorous way with convex ellipsoidal sets, which makes the approximated criteria much easier to handle than the initial ones. Then, both static and kinematic approaches are carried out numerically on the homogenized problem using the above approximated macroscopic strength domains in an adapted finite element method. The whole numerical procedure is applied on one classical geotechnical problem: the ultimate bearing capacity of stone column reinforced foundations. The strength capacity of the structure is rigorously framed and the efficiency of the proposed numerical method is highlighted in terms of accuracy and calculation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.