Abstract

This paper presents the synchronization between a pair of identical susceptible–infected–recovered (SIR) epidemic chaotic systems and fractional-order time derivative using active control method. The fractional derivative is described in Caputo sense. Numerical simulation results show that the method is effective and reliable for synchronizing the fractional-order chaotic systems while it allows the system to remain in chaotic state. The striking features of this paper are: the successful presentation of the stability of the equilibrium state and the revelation that time for synchronization varies with the variation in fractional-order derivatives close to the standard one for different specified values of the parameters of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.