Abstract

This study provides a novel analytical approach to studying the solutions and stability of fractional differential delay equations without using Lyapunov function method. By applying the properties of Caputo fractional derivatives, the Laplace transform and the Mittag–Leffler function, the authors first provide an explicit formula and solution bounds for the solutions of linear fractional differential delay equations. Then, they prove new sufficient conditions for exponential boundedness, asymptotic stability and finite-time stability of such equations. The results are illustrated by numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.