Abstract

This article investigates the finite-time stability of a class of fractional-order bidirectional associative memory neural networks (FOBAMNNs) with multiple proportional and distributed delays. Different from the existing Gronwall integral inequality with single proportional delay ( N = 1 ), we establish the Gronwall integral inequality with multiple proportional delays for the first time in the case of N ≥ 2 . Since the existing fractional-order single-constant delay Gronwall inequality with two different orders cannot be directly applied to the stability analysis of the aforementioned system, initially, we skillfully develop a novel one with generalized fractional multiproportional delays' Gronwall inequalities of different orders. Furthermore, combined with the newly constructed generalized inequality, the stability criteria of FOBAMNNs with fractional orders and under weaker conditions, i.e., at most linear growth and linear growth conditions rather than the global Lipschitz condition, are given respectively. Finally, numerical experiments verify the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.