Abstract

In this paper, we derive state equations for linearized discrete-time models of forth-order charge-pump phase-locked loops. We solve the differential equations of the loop filter by using the initial conditions and the boundary conditions in a period. The solved equations are linearized and rearranged as discrete-time state equations for checking stability conditions. Some behavioral simulations are performed to verify the proposed method. By examining the stability of loops with different conditions, we also propose an expression between the lower bound of the reference frequency, the open loop unit gain bandwidth, and the phase margin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.