Abstract

Repetitive control is an internal model principle-based technique for tracking periodic references and/or rejecting periodic disturbances. Digital repetitive controllers are usually designed assuming a fixed frequency for signals to be tracked/rejected, its main drawback being a dramatic performance decay when this frequency varies. A common approach to overcome this problem consists of an adaptive change of the sampling time according to the reference/disturbance period variation. Such a structural change may indeed compromise closed-loop stability. Nevertheless, no formal stability proofs are reported in the literature. This study addresses the stability analysis of a digital repetitive control system operating under time-varying sampling period. The procedure adapts the robust control approach introduced by Fujioka and Suh, which treats the time-varying parts of the system description as norm-bounded uncertainties, to the special features of digital repetitive control systems. This results in a conservatism reduction leading to an improvement in the obtained stability intervals. The proposed technique is also applicable to a more general class of systems incorporating a discrete-time dynamic controller. The article is completed with the application of the method to two standard examples in the repetitive control literature. Experimental results confirm the theoretical predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.