Abstract
This letter proposes computational algorithms for analyzing conewise affine dynamical systems, where every neighborhood of the origin contains an affine mode. These algorithms are based on conewise linear Lyapunov functions. To make such algorithms useful, we present an algorithm to automatically search over partitions defining these conewise Linear functions. This algorithm is sound, although we present a counter-example to its completeness. We show that this approach verifies stability of 2D and 3D examples of conewise affine dynamical systems, including combinations of the harmonic and nonsmooth oscillators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.