Abstract
Without assuming boundedness and differentiability of the activation functions and any symmetry of interconnections, we employ Lyapunov functions to establish some sufficient conditions ensuring existence, uniqueness, global asymptotic stability, and even global exponential stability of equilibria for the Cohen-Grossberg neural networks with and without delays. Our results are not only presented in terms of system parameters and can be easily verified and also less restrictive than previously known criteria and can be applied to neural networks, including Hopfield neural networks, bidirectional association memory neural networks, and cellular neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.