Abstract
We discuss the stability properties of an autonomous system in loop quantum cosmology. The system is described by a self-interacting scalar field $\phi$ with positive potential $V$, coupled with a barotropic fluid in the Universe. With $\Gamma=VV"/V'^2$ considered as a function of $\lambda=V'/V$, the autonomous system is extended from three dimensions to four dimensions. We find that the dynamic behaviors of a subset, not all, of the fixed points are independent of the form of the potential. Considering the higher-order derivatives of the potential, we get an infinite-dimensional autonomous system which can describe the dynamical behavior of the scalar field with more general potential. We find that there is just one scalar-field-dominated scaling solution in the loop quantum cosmology scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.