Abstract

The hydrodynamic stability analysis of viscous flow between rotating porous cylinder has been researched for a long time by many researchers. But little works have been carried out about the linear stability analysis of the two-phase suspension. When the radial flow is present, the linear hydrodynamic stability analysis of suspension has been carried out between rotating porous cylinder. We know that the continuous and Stokes equations cannot only solve the stability problem of the continuous fluid phase, but also solving the stability problem of the discontinuous particle phase. The stability equations from an eigenvalue problem that was solved by a numerical technique based on Wan's method. The results reveal that the radial Reynolds number have a great effect on the critical Taylor number in the suspension. In this paper, we also researched on how the critical Taylor number changes as the radius ratio η, the axial wave number k, the particle concentration and the circumferential direction wave number happen to change with the radial Reynolds number increasing range from -5 to 5. Thus, our research discovered the radial inflow and outflow have a stabilizing effect on the two-phase suspension and the circumferential direction wave number also has a stabilizing effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call