Abstract
Many theoretical and experimental results have appeared recently on the stability of T-S fuzzy systems and the convergence of the Particle Swarm Optimization (PSO) algorithm. In this paper, we present a T-S fuzzy stochastic PSO model in which the PSO algorithm is viewed as a time-invariant linear plant with a time-varying feedback controller that is embedded in the T-S fuzzy state system. The randomly weighted sum of the cognition component and social component is used as the state feedback controller in the local linear state system, and the PSO algorithm is theoretically improved from one that performs single stochastic optimization to one that performs fuzzy stochastic optimization. Conditions for asymptotic stability of the new model are given using the T-S fuzzy stability theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.