Abstract

For a single-walled carbon nanotube (CNT) conveying fluid, the internal flow is considered to be pulsating and viscous, and the resulting instability and parametric resonance of the CNT are investigated by the method of averaging. The partial differential equation of motion based on the nonlocal elasticity theory is discretized by the Galerkin method and the averaging equations for the first two modes are derived. The stability regions in frequency–amplitude plane are obtained and the influences of nonlocal effect, viscosity and some system parameters on the stability of CNT are discussed in detail. The results show that decrease of nonlocal parameter and increase of viscous parameter both increase the fundamental frequency and critical flow velocity; the dynamic stability of CNT can be enhanced due to nonlocal effect; the contributions of the fluid viscosity on the stability of CNT depend on flow velocity; the axial tensile force can only influence natural frequencies of the system however the viscoelastic characteristic of materials can enhance the dynamic stability of CNT. The conclusions drawn in this paper are thought to be helpful for the vibration analysis and structural design of nanofluidic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.