Abstract
We investigate the stability boundaries of a quantum cascade laser subject to phase-conjugate optical feedback. From a three-level model, we reduce our set of equations to the usual modified Lang-Kobayashi equations describing a semiconductor laser subject to phase-conjugate feedback. We then determine the Hopf bifurcation conditions, which we explore by using asymptotic methods. In the limit of large delays, we find approximations of the first Hopf bifurcation that is responsible for the destabilization of the system. We obtain an expression that depends only on three parameters: the feedback strength, the line-width enhancement factor, and the pump current. From this expression, we study the stability boundaries of our system. We compare our results with the initial three-level model using a continuation method. We find qualitative and quantitative agreements of the stability boundaries with the two methods. Finally, we compare our findings with the ones obtained for a quantum cascade laser subject to conventional optical feedback.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.