Abstract

The purpose of this work is the study of the qualitative behavior of the homogeneous in space solution of a delay differential equation arising from a model of infection dynamics. This study is mainly based on the monotone dynamical systems theory. Existence and smoothness of solutions are proved, and conditions of asymptotic stability of equilibriums in the sense of monotone dynamical systems are formulated. Then, sufficient conditions of global stability of the nonzero steady state are derived, for the two typical forms of the function f, specifying the efficiency of immune response-mediated virus elimination. Numerical simulations illustrate the analytical results. The obtained theoretical results have been applied, in a context of COVID-19 data calibration, to forecast the immunological behaviour of a real patient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.