Abstract

This paper addresses the stability problem of delayed nonlinear positive switched systems whose subsystems are all positive. Both discrete-time systems and continuous-time systems are studied. In our analysis, the delays in systems can be unbounded. Two conditions are established to test the local asymptotic stability of the considered systems. The method to compute the domains of attraction is also proposed provided that the system is locally asymptotically stable. When reduced to general nonlinear positive systems, that is, the considered switched system consists of only one mode, an interesting conclusion follows that the proposed nonlinear positive system is locally asymptotically stable for all admissible delays and nonnegative nonlinearities which satisfy an extra condition at the origin, if and only if the system represented by the linear part is asymptotically stable for all admissible delays. Finally, a numerical example is presented to illustrate the obtained results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.