Abstract

Uncertain differential equation is a type of differential equation driven by Liu process that is the counterpart of Wiener process in the framework of uncertainty theory. The stability theory is of particular interest among the properties of the solutions to uncertain differential equations. In this paper, we introduce the Lyapunov’s second method to study stability in measure and asymptotic stability of uncertain differential equation. Different from the existing results, we present two sufficient conditions in sense of Lyapunov stability, where the strong Lipschitz condition of the drift is no longer indispensable. Finally, illustrative examples are examined to certify the effectiveness of our theoretical findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.