Abstract

This paper is concerned with the stability analysis for static recurrent neural networks (RNNs) with time-varying delay. By Lyapunov functional method and linear matrix inequality technique, some new delay-dependent conditions are established to ensure the asymptotic stability of the neural network. Expressed in linear matrix inequalities (LMIs), the proposed delay-dependent stability conditions can be checked using the recently developed algorithms. A numerical example is given to show that the obtained conditions can provide less conservative results than some existing ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.