Abstract

In this paper, the stability problem is investigated for networked control systems. Input delays and multiple communication imperfections containing time-varying transmission intervals and transmission protocols are considered. A unified framework based on the hybrid systems with memory is proposed to model the whole networked control system. Hybrid systems with memory are used to model hybrid systems affected by delays and permit multiple jumps at a jumping instant. The stability analysis depends on the Lyapunov–Krasovskii functional approaches for hybrid systems with memory and the proposed stability theorem does not need strict decrease of the Lyapunov–Krasovskii functional during jumps. Based on the developed stability theorems, stability conditions for networked control systems are established. An explicit formula is given to compute the maximal allowable transmission interval. In the special case that the networked control system contains linear dynamics, an explicit Lyapunov functional is constructed and stability conditions in terms of linear matrix inequalities (LMI) are proposed. Finally, an example of a chemical batch reactor is given to illustrate the effectiveness of the proposed results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.