Abstract

This paper addresses the problem of reorienting a rigid spacecraft from arbitrary initial conditions to prescribed final conditions with zero angular velocity. The control law analyzed is based on quaternion feedback and leaves the user to choose two gains as functions of position, angular rate, and time. For arbitrary initial states, conditions on the controller gains are identified that guarantee global asymptotic stability. For the special case of rest-to-rest reorientations, the control law reduces to earlier results involving a principal axis rotation. The paper also addresses slew rate constraints, both, in terms of the two and infinity norms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.