Abstract

The Deep Deterministic Policy Gradient (DDPG) algorithm is a reinforcement learning algorithm that combines Q-learning with a policy. Nevertheless, this algorithm generates failures that are not well understood. Rather than looking for those errors, this study presents a way to evaluate the suitability of the results obtained. Using the purpose of autonomous vehicle navigation, the DDPG algorithm is applied, obtaining an agent capable of generating trajectories. This agent is evaluated in terms of stability through the Lyapunov function, verifying if the proposed navigation objectives are achieved. The reward function of the DDPG is used because it is unknown if the neural networks of the actor and the critic are correctly trained. Two agents are obtained, and a comparison is performed between them in terms of stability, demonstrating that the Lyapunov function can be used as an evaluation method for agents obtained by the DDPG algorithm. Verifying the stability at a fixed future horizon, it is possible to determine whether the obtained agent is valid and can be used as a vehicle controller, so a task-satisfaction assessment can be performed. Furthermore, the proposed analysis is an indication of which parts of the navigation area are insufficient in training terms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.